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Abstract We present a common framework to study decay and exchanges rates in a wide
class of dynamical systems. Several applications, ranging from the metric theory of con-
tinuos fractions and the Shannon capacity of constrained systems to the decay rate of
metastable states, are given.
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1 Introduction

In applications of the theory of dynamical systems to concrete situations it is often neces-
sary to study rare events. Examples are open systems with a small chance to escape and
metastable states. Although much numerical work exists (e.g. see [6, 10] and references
therein) not many rigorous results are available. In principle one can try to apply perturba-
tion theory but the existing theorems [13, 14] do not produce very sharp results. A similar
situation occurs in the study of linear response theory. While perturbation theory applies to a
wide class of smooth systems [22], this is no longer true when discontinuities are present in
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the system. In that case not only perturbation theory does not imply linear response, but in
fact there are cases when linear response itself is violated, see [1, 3] and references therein.
Since an open system is typically modeled by a hole in the system (that is by a region in
which the dynamics stops once the trajectory enters it), the presence of discontinuities is
inevitable.

Accordingly, one could expect that the quasi-invariant measure (which describes the long
time distribution of the trajectories conditioned to the event that they have not left the system,
i.e. they have not entered the hole) and the escape rate (that measures the rate at which
trajectories leave the system) depend in a very erratic (non-differentiable) way on the size
and position of the hole. Yet, almost nothing is known about such situations.

In the present paper we prove a general theorem providing a first order expansion of es-
cape rates and exchange rates in terms of the “size” of the rare effect that is investigated
(whereby refining the results in [14, 25] even-though limited to the present setting). We
derive from this theorem explicit formulae for escape rates (both in one dimensional and
two-dimensional cases) and for the exchange rate between two quasi-invariant sets (metasta-
bility). To our knowledge such formulae were known only for rather special cases (see [7]
where such type of formulae first appeared) and are completely new in the generality pre-
sented here.

Just to give an impression of the wide applicability of our main result, we list a few
examples that are detailed in Sect. 3.

Let z be a periodic point of period p for the doubling map x �→ 2x mod 1 and consider
intervals Iε � z of length ε. Denote the decay rate for the hole Iε by λε ; i.e. the Lebesgue
measure of the set of points that are not trapped by Iε during the first n iterations of the map
decreases asymptotically like λn

ε . Then λε has the following first order expansion at ε = 0

λε = 1 − ε · (1 − 2−p
) + o(ε). (1.1)

Similar formulae can be obtained when the hole is a union of several intervals, and analogous
results hold of course for a coin tossing process that is stopped once a pattern of heads and
tails from a given finite collection is observed.

We turn to continued fraction expansions. Let mk,n be the Lebesgue measure of those
points x ∈ [0,1] whose continued fraction expansion up to the n-th digit does not contain a
block of k consecutive 1’s. For each k, these numbers decrease asymptotically like some λn

k

and, setting z =
√

5−1
2 , we show

lim
k→∞

1 − λk

z2k
= z3(1 + z2)2

ln 2
≈ 0.6504. (1.2)

The above are one dimensional examples. Along the same lines one can treat piecewise
expanding maps in higher dimensions provided the invariant density is not too irregular in a
neighborhood of the holes. This is not guaranteed working only with the usual multivariate
BV-spaces, but rather by variants as developed by Blank [4] or Saussol [24]. In principle the
present theory also applies to Anosov diffeomorphisms if one can devise the proper func-
tional space setting. Unfortunately, despite recent progress [2, 9], the available settings are
still not adequate for the applications of the present results. Nevertheless, it is conceivable
that in the near future this result could be applied e.g. to billiards.

A related but different question occurs if a system has two ergodic mixing components
that share a common part of their boundary in phase space. In that case small perturbations
can cause rare “jumps” over the boundary giving thus rise to quasistationary (also called
metastable or nearly invariant) behavior. As a result the double eigenvalue 1 corresponding
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to the two original mixing components splits into a single eigenvalue 1 and another real
eigenvalue λε close to 1 which characterizes the rate of exchange between the two com-
ponents, see e.g. [8, 21]. In Sect. 3.2 we consider piecewise expanding 1D-maps T on the
interval [0,1] with two mixing components I1, I2 having a fixed point z in common. The
Markov process obtained by adding to the dynamics, at each time n, independent identically
distributed random noise εZn shows quasistationary behavior with

lim
ε→0

1 − λε

ε
= β + α

2

(
1 − 1

T ′(z)

)
E[|W |] + β − α

2
E[Z1] (1.3)

where W := ∑∞
n=0[T ′(z)]−nZn+1, α := h(z−)

2m(I1)
, β := h(z+)

2m(I2)
and h = limn→∞ P n

0 1 is the “nat-
ural” invariant density of T .

The paper is organized as follows: in the next section we describe the general setting and
state our main Theorem 2.1 whose proof is postponed to Sect. 6. In Sect. 3 we apply the
theorem to decay and exchange rates of piecewise expanding interval maps and illustrate
its applicability with some specific examples: the doubling map, the Gauss map and the
generalized cusp map. The decay rate of a two-dimensional example is studied in Sect. 4.
More precisely, we study the rate at which trajectories of two coupled 1D-maps synchro-
nize up to some difference ε in the limit ε → 0. Finally, in Sect. 5, we indicate relations
between some of our formulas and approaches to metastability in molecular dynamics [20],
in oceanic structures [12], and with the Shannon capacity of constrained binary codes [16].

2 An Abstract Perturbation Result

Let (V ,‖.‖) be a real or complex normed vector space with dual (V ′,‖.‖) . Consider a
family Pε : V → V (ε ∈ E) of uniformly bounded linear operators where E ⊆ R is a closed
set of parameters with ε = 0 as an accumulation point. We make the following assumptions
on the operators Pε: there are λε ∈ C, ϕε ∈ V , νε ∈ V ′ and linear operators Qε : V → V

such that

λ−1
ε Pε = ϕε ⊗ νε + Qε, (A1)

Pε(ϕε) = λεϕε, νεPε = λενε, Qε(ϕε) = 0, νεQε = 0, (A2)

∞∑

n=0

sup
ε∈E

‖Qn
ε‖ =: C1 < ∞. (A3)

(The summability condition in (A3) can only be satisfied if the operators Pε have a uniform
spectral gap. See Remark 2.2 for a weakening of this requirement.) Observe that assumptions
(A1) and (A2) imply νε(ϕε) = 1 for all ε. As our ultimate goal is to prove a perturbation
result for small ε, it is natural to relate the “size” of ϕε to that of ϕ0 by a further assumption:

ν0(ϕε) = 1 and sup
ε∈E

‖ϕε‖ =: C2 < ∞. (A4)

Finally we denote

�ε := ν0((P0 − Pε)(ϕ0)) (2.1)
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and we make the following assumptions to control the size of the perturbation: there is
C3 > 0 such that

ηε := ‖ν0(P0 − Pε)‖ → 0 as ε → 0, (A5)

ηε · ‖(P0 − Pε)(ϕ0)‖ ≤ C3|�ε|. (A6)

Here ηε denotes the norm of the linear functional ν0(P0 − Pε) : V → R.
The basic identity is

λ0 − λε = λ0ν0(ϕε) − ν0(λε(ϕε)) = ν0((P0 − Pε)(ϕε)). (2.2)

In view of assumptions (A4) and (A5) this implies

|λ0 − λε| ≤ C2ηε, (2.3)

in particular, limε→0 λε = λ0. The main result of this section is the following more accurate
approximation for λ0 − λε .

Theorem 2.1 Assume (A1)–(A6).

(a) There is ε0 > 0 such that λε = λ0 if ε ≤ ε0 and �ε = 0.
(b) If �ε �= 0 for all sufficiently small ε ∈ E and if

qk := lim
ε→0

qk,ε := lim
ε→0

ν0((P0 − Pε)P
k
ε (P0 − Pε)(ϕ0))

�ε

(A7)

exists for each integer k ≥ 0, then

lim
ε→0

λ0 − λε

�ε

= 1 −
∞∑

k=0

λ
−(k+1)

0 qk. (2.4)

Remark 2.2 In Sect. 6 we prove this theorem under slightly weaker hypothesis. In particu-
lar, we relax the assumption of uniform hyperbolicity (which yields a spectral gap for the
transfer operator). Namely, we replace the summability condition

∑∞
n=0 supε∈E ‖Qn

ε‖ < ∞
from (A3) by the following condition: there is a second norm ‖ · ‖∗ ≥ ‖ · ‖ on V such that

∞∑

n=0

sup
ε∈E

‖Qn
ε‖∗ =: C1 < ∞ (A3∗)

where ‖Qn
ε‖∗ := sup{‖Qn

εψ‖ : ‖ψ‖∗ ≤ 1}. We have to compensate this by slightly stronger
assumptions on ϕ0, namely ‖ϕ0‖∗ ≤ C2 < ∞ and

ηε · ‖(P0 − Pε)(ϕ0)‖∗ ≤ C3|�ε|. (A6∗)

3 Applications to Piecewise Expanding Interval Maps

Assume that T : [0,1] → [0,1] is piecewise monotone with (possibly countably many) con-
tinuously differentiable branches. (This means that each branch is continuously differen-
tiable in the interior of its domain so that the derivative even of a single branch may be
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unbounded.) Define g : R → R by g(x) = 1/|T ′(x)| if x is in the interior of one of the
monotonicity intervals of T and g(x) = 0 otherwise, and assume that ‖g‖∞ < 1 and that g is
of bounded variation. Let BV be the space of real-valued functions of bounded variation on
[0,1]. Rychlik [23] showed that the Perron-Frobenius operator P of T acting on Lebesgue
equivalence classes of functions from BV is quasi-compact. (As BV-functions have at most
countably many discontinuities, two BV-functions in the same Lebesgue equivalence class
have the same discontinuities and differ at most by their values at these countably many
points, and we will not distinguish henceforth between BV-functions and their Lebesgue
equivalence classes.)

If T is mixing this implies that P0 = P satisfies (A1)–(A3) for ε = 0 with ν0 = m

(= Lebesgue measure), λ0 = 1 and 0 ≤ ϕ0 ∈ BV.
The essential observation behind this is that for ε = 0 a Lasota-Yorke type inequality [17]

is satisfied: there are constants r ∈ (0,1) and R > 0 such that for ε = 0, all n ∈ N and all
f ∈ BV,

‖P n
ε f ‖ ≤ R

(
rn‖f ‖ +

∫
|f |dm

)
(3.1)

where ‖f ‖ is the variation of the extension of f to the whole real line by setting f (x) = 0 if
x /∈ [0,1]. For the applications in this section we will assume that this inequality holds not
only for ε = 0 but, with uniform constants r and R, for all ε ∈ E. This is mostly the case
when Pε is a small dynamical perturbation of P0—however there are exceptions, see [14]
for a more precise discussion and references.

3.1 Decay Rates

We suppose that T is mixing. Let (V ,‖.‖) be the space BV, let E = [0, ε1], and consider
a family (Iε)ε∈E of compact subintervals of [0,1] such that Iε ⊆ Iε′ if ε ≤ ε′. Define the
operators Pε by Pε(f ) = P (f 1[0,1]\Iε ). If m(Iε1) is sufficiently small, the perturbation results
from [14] apply provided (3.1) holds, see [19, Sect. 7]. In particular, (A1)–(A4) are satisfied
for ε ∈ E. We have �ε = ν0(P (1Iε\I0ϕ0)) = μ0(Iε \ I0) where μ0 is the probability measure
with density ϕ0 w.r.t. ν0. (μ0 is indeed the equilibrium state for logg on the “non-trapped”

set Xnt := {x ∈ [0,1] : T nx /∈ ◦
I 0∀n ≥ 0}. ϕε is also the conditionally invariant density for

the “hole” Iε , see e.g. [19].)
We need to check assumptions (A5) and (A6). First note that

ηε = sup
‖ψ‖≤1

|ν0(P0(ψ1Iε\I0))| = |λ0| sup
‖ψ‖≤1

∣∣
∣∣

∫

Iε\I0

ψdν0

∣∣
∣∣ ≤ |λ0|ν0(Iε \ I0). (3.2)

In particular, |ν0(P0 − Pε)(ϕ0)| = |λ0|
∫

Iε\I0
ϕ0 dν0. As ‖(P0 − Pε)(ϕ0)‖ ≤ O(‖ϕ01Iε\I0‖),

assumptions (A5) and (A6) will be satisfied if ν0(Iε \ I0) → 0 when ε → 0 and if

‖ϕ01Iε\I0‖ ≤ const
1

ν0(Iε \ I0)

∫

Iε\I0

ϕ0 dν0. (3.3)

This condition (as well as conditions (A1)–(A4) discussed above) can be checked easily in
most cases of interest. It is always satisfied if infϕ0|Iε1

> 0.
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3.1.1 Holes Iε Shrinking to a Point

We specialize to the case where I0 = {z} for some z ∈ [0,1] so that P0 is indeed the Perron-
Frobenius operator P for T and λ0 = 1, and we assume for simplicity that T and also the
invariant density ϕ0 are continuous at z. We consider Iε with length ε, so m(Iε \ I0) = ε, and
we assume that �ε > 0. Here are a few examples:

The doubling map: T (x) = 2x mod 1 with ϕ0(x) = 1.
The Gauss map: T (x) = 1

x
mod 1 with ϕ0(x) = 1

ln 2
1

1+x
.

The generalized cusp map: Tγ (x) = 1 − |2x − 1|γ for some γ ∈ ( 1
2 ,1]. As |T ′

γ (x)| =
2γ

|2x−1|1−γ ≥ 2γ , this map is a uniformly expanding map with two full branches. The

weight function g(x) = |T ′
γ (x)|−1 has two monotone bounded branches and is clearly

of bounded variation. (Observe that T1 is just the tent map. T1/2 is known as the cusp
map. It has x = 0 as a neutral fixed point and is not covered by the present setting.) The

invariant density ϕ0(x) of Tγ behaves like ϕ0(1/2)

γ
(1 − x)

1
γ −1 near x = 1, so it has a zero

at x = 1 if γ < 1.1

In all three examples, �ε = μ0(Iε) > 0. In the first two examples, condition (3.3) is
clearly satisfied because infϕ0|Iε > 0 if ε is sufficiently small. For the generalized cusp

map the same is true if z �= 1. In case z = 1, ‖ϕ01Iε‖ = 2 constγ ε
1
γ −1 and

∫
Iε

ϕ0 dm =
constγ

∫ 1
1−ε

(1 − x)
1
γ −1

dx = constγ γ ε
1
γ so that (3.3) is satisfied as well.

Let

Uk,ε := T −1([0,1] \ Iε) ∩ · · · ∩ T −k([0,1] \ Iε) ∩ T −(k+1)Iε.

As qk,ε = μ0(Iε ∩ Uk,ε)/μ0(Iε), we find:

If z is not periodic: then Uk,ε = ∅ for sufficiently small ε so that qk = limε→0 qk,ε = 0 for
all k. Therefore,

lim
ε→0

1 − λε

μ0(Iε)
= 1, in particular lim

ε→0

1 − λε

m(Iε)
= ϕ0(z). (3.4)

If z is periodic with period p: then Uk,ε = ∅ for sufficiently small ε except if k = p − 1 so
that

lim
ε→0

1 − λε

μ0(Iε)
= 1 − lim

ε→0

μ0(Iε ∩ T −pIε)

μ0(Iε)
= 1 − 1

|(T p)′(z)| , (3.5)

in particular lim
ε→0

1 − λε

m(Iε)
= ϕ0(z)

(
1 − 1

|(T p)′(z)|
)

. (3.6)

Formulas (3.4) and (3.6) imply that the function ε �→ λε is differentiable at ε = 0. Note,
however, that in general it is non-differentiable at other values of ε, see Sect. 3.1.2 below.

We look more explicitly at the above three examples. Recall that I0 = {z}.

1Here is a sketch of the argument: As the map Tγ has full branches, the invariant density ϕ0 = limn→∞ Pn
0 1

is continuous. Also ϕ0( 1
2 ) > 0, because otherwise ϕ0(x) = 0 for all x ∈ ⋃

n T −n
γ { 1

2 }, and this set is dense in
[0,1]. Therefore, for x close to 1,

ϕ0(x) = P0ϕ0(x) ∼ ϕ0(1/2)

γ
(1 − x)

1
γ −1

.
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The doubling map: limε→0
1−λε

m(Iε)
= 1 − 2−p if T p(z) = z. This is (1.1).

The Gauss map: (a) Consider z = 0 and ε ∈ E := { 1
2 , 1

3 , 1
4 , . . . } ∪ {0}. Let Iε := [0, ε]. In

terms of the continued fraction algorithm this means that the expansion stops as soon as
a digit ≥ ε−1 is generated. In this case it is easy to see that

μ0(Iε ∩ Uk,ε) ≤ 1

ln 2
m(Iε ∩ T −(k+1)Iε) = 1

ln 2

∫

Iε

P k
0 (P01Iε ) dm

= O(εμ0(Iε))

so that qk,ε = O(ε) and hence qk = 0 for all k. Hence limε→0
1−λε

ε
= 1

ln 2 .

(b) For the same map we consider z =
√

5−1
2 which is the rightmost fixed point of T .

We have T ′(z) = −z−2. As −z and z−1 are the two zeros of x2 − x − 1, it is obvious
that 1 − 1

|T ′(z)| = z. Hence, for intervals Iε of length ε around z we have limε→0
1−λε

ε
=

1
ln 2

z
1+z

= z2

ln 2 .
(c) Denote f (x) = 1

x
− 1. Then f is the rightmost branch of T , and the interval

around z which is mapped by T k onto (0,1) has endpoints f −k(1) and f −k(0). De-
note the length of this interval by εk and the interval itself by Iεk

. As −z and z−1

are the eigenvalues of the coefficient matrix of f −1, a calculation shows that εk =
z2k+1(1 + z2)2(1 + O(z2k+2)).2 In terms of the continued fraction algorithm the hole
Iεk

means that an expansion stops at time n + k as soon as at least k consecutive digits 1
are generated. So it is natural to rewrite the limit from b) as in formula (1.2), namely

lim
k→∞

1 − λεk

z2k
= z3(1 + z2)2

ln 2
≈ 0.6504. (3.7)

The generalized cusp map: We focus on z = 1, where the invariant density ϕ0 vanishes, and
consider holes Iε = [1 − ε,1]. Then, for ε close to 0, we have μ0(Iε) ∼ ϕ0(1/2)

γ

∫ 1
1−ε

(1 −
x)

1
γ −1

dx = ϕ0(
1
2 ) ε

1
γ so that limε→0

1−λε

ε1/γ = ϕ0(
1
2 ).

3.1.2 Holes Shrinking to a Nontrivial Hole

We assume now that I0 is not a single point but an interval of some fixed length 
 > 0 and the
intervals Iε ⊇ I0 have length 
 + ε. To simplify the discussion we assume more specifically
that Iε = [a − ε, a + 
] where a ∈ [0,1] is a continuity point of T and also of ϕ0. Assume
furthermore that a is not periodic for T (the periodic case can be dealt with analogously).
Now, as μ0 is supported by the non-trapped set Xnt , we have in particular μ0(I0) = 0 and
hence �ε = μ0(Iε). It follows from Theorem 2.1 that either μ0(Iε) = 0 and hence λε = λ0

for all sufficiently small ε, or limε→0
λ0−λε

μ0(Iε)
= 1. But observe that μ0 is of fractal nature, so

2Denote the coefficient matrix
( 0 1

1 1

)
of f −1 by M and let Mk =: ( ak bk

ck dk

)
. Then f −k(x1) − f −k(x0) =

det(Mk)
x1−x0

(ckx1+dk)(ckx0+dk)
so that εk = |f −k(1) − f −k(0)| = 1

|(ck+dk)dk | . As ck+1 = dk and dk+1 =
(ck + dk), we have εk = 1

|dk+1dk | and dk+1 = dk + dk−1. With d0 = d1 = 1 this yields dk =
1

1+z−2 (z−(k+2) + (−z)k). Hence

εk = z2k(1 + z−2)2

(z−3 + (−1)k+1z2k+1)(z−2 + (−1)kz2k)
= z2k+1(1 + z2)2(1 + O(z2k+2)).
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typically μ0(Iε) depends on ε in a devil’s staircase manner. Hence either λε = λ0 for small ε

(which happens if a itself is trapped), or limε→0
ε

μ0(Iε)
= 0 and ε �→ λε is not differentiable

at ε = 0.

3.2 Exchange Rates

We suppose that T has two ergodic components and that its restriction to each of these com-
ponents is mixing. So the eigenvalue 1 of P has (geometric) multiplicity 2 and the rest of
its spectrum is contained in a disk of radius smaller than some γ ∈ (0,1). Let (�ε)ε∈E be
a family of Markov operators close to the identity with �0 = I, and denote Pε := P ◦ �ε .
(One could as well consider �ε ◦ P since that operator has the same eigenvalues as Pε .)
Under rather weak regularity assumptions on the �ε , the spectral perturbation results from
[14] apply again. This is true, for example, if the �ε are convolutions with smooth densities
kε(x) = ε−1k(ε−1x) (modeling random perturbations) or if they are conditional expecta-
tions w.r.t. m and a finite partition into intervals of length ε (modeling Ulam’s discretization
scheme.) As the Pε are also Markov operators, this means that 1 is an isolated eigenvalue
of each Pε . If it has multiplicity 2 there is nothing more to say about it. If it is a simple
eigenvalue, however, then there is a second simple eigenvalue λε close to 1 to which we will
apply Theorem 2.1.

Let (V ,‖.‖) be the space

BV0 := {f ∈ BV : m(f ) = 0}.
BV0 is invariant under all Pε , and the previous discussion implies that assumptions (A1)–
(A4) are satisfied. More precisely, λ0 = 1, and there is an increasing function χ : [0,1] →
{−1,1} such that χ ◦ T = χ , |ϕ0| = χϕ0 is an invariant density for P = P0, and ν0 = χm,
so that μ0 := ϕ0ν0 = |ϕ0|m is an invariant probability measure that gives equal mass to
both ergodic components of T . Let Ĩ1 = {χ = −1} and Ĩ2 = {χ = 1} be the two invariant
components of T .

In order to apply Theorem 2.1 let

pε(x) := 1

2

(
1 − (

χ(x) · (�∗
εχ)(x)

))

where �∗
ε is the dual of �ε with respect to Lebesgue measure on [0,1]: It is easy to see

that pε(x) is the probability that the Markovian dynamics �ε move the system from the
state x (that belongs to one of the two invariant components of T ) to some state in the other
component.

We have to check assumptions (A5) and (A6). Routine calculations show that ν0(P0 −
Pε)(ψ) = 2m(χ · pε · ψ) for each ψ ∈ V . This implies

�ε = ν0(P0 − Pε)(ϕ0) = 2m(|ϕ0| · pε) = 2μ0(pε) (3.8)

and ν0(P0 − Pε)(ψ) = 2m(χpεψ) ≤ 2‖ψ‖ ∫ 1
0 |pε|dm so that ηε ≤ 2m(pε). Therefore we

require that the average probability m(pε) to change the invariant component under the
action of �ε tends to 0 as ε → 0 and that

‖(I − �ε)(ϕ0)‖ ≤ const · 1

m(pε)

∫
|ϕ0|pε dm. (3.9)

In the following we will assume

inf |ϕ0| > 0.
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This trivially implies (3.9) although the latter can be verified in many other cases. It remains
to check assumption (A7). Observing (3.8) and

ν0

(
(P0 − Pε)P

k
ε (P0 − Pε)(ϕ0)

) = m((χ − �∗
εχ) · P k

ε (P0 − Pε)(ϕ0))

= 2m
(
pεχ · P k

ε P0(ϕ0 − �εϕ0)
)

(3.10)

we get the following expression for the qk,ε :

qk,ε = 1

m(|ϕ0|pε)
m

(
pεχ · P k

ε P0(ϕ0 − �εϕ0)
)
. (3.11)

The evaluation of the limit as ε → 0 depends strongly on the details of the map T and of
the perturbation. We therefore make some further simplifying assumptions:

• The �ε are local perturbations, i.e., for each x, �εδx is supported in a Cε-neighborhood
of x.

• T is continuous.

As the restrictions of T to its two ergodic components are mixing, the continuity of T

implies that the non-wandering part of these components are just two single intervals Ii ⊂ Ĩi .
If these intervals do not have a common end point, then �ε = 2μ0(pε) = 0 for small ε so
that λε = 1 for such ε by our main theorem. Otherwise I1 and I2 have a common endpoint z.
Since two interval can have at most one common endpoint and since the map is continuous,
it follows by the invariance of I1, I2 that z is a fixed point. In this case, pε(x) = 0 unless
x belongs to the Cε-neighborhood of z. As an example let us consider the special (but still
rather general) class of examples characterized by the following properties

• I1 ∪ I2 = [0,1].3
• Assume �εf (x) = ∫ 1

0 Kε(y, x)f (y)dy where Kε is a positive kernel such that, for all

y ∈ [0,1], ∫ 1
0 Kε(y, x)dx = 1. In order to satisfy assumptions (A1)–(A4) one should

suppose that the kernels are bistochastic or close to convolution kernels in the sense of
[5, Corollary 3.20].

• There exists a > 0 such that Kε(y, x) = ε−1K(ε−1(x − y)) provided |z − y| ≤ a. Here K

is a smooth probability density supported in [−1,1].4
• ϕ0 is continuous in each ergodic component and T is differentiable at z.

Note that, since |ϕ0| must give the same weight to the two ergodic components it will,
in general, be discontinuous at z. Let α,β be the left and right limit respectively. Then,
introducing coordinates x = z + εζ and setting θ(y) = signy, we have ϕ0(z + εζ ) =
β+α

2 θ(ζ ) + β−α

2 + o(1), uniformly for ζ in a compact set. Next, for ε small enough,

pε(z + εζ ) = 1

2

∫

R

K(y − ζ )[1 − θ(y)θ(ζ )]dy =: p(ζ ).

Note that p ≥ 0 and p(ζ ) = 0 if |ζ | > 1. Accordingly,

μ0(pε) = m(|ϕ0|pε) = ε
β − α

2
m(θp) + ε

β + α

2
m(p) + o(ε) =: ε� + o(ε).

3If the wandering part is present, the final result still holds with Ii substituted by
⋃

n∈N
T nIi in (3.13).

4One can consider the more general case Kε(y, x) = ε−1K̃(y, ε−1(x − y)), for some smooth function K̃ .

The final formula then holds with K(·) replaced by K̃(z, ·).
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In addition, for each function �ε such that �ε(z + εζ ) = ψ(ζ ) + o(1), for some fixed
compact support function ψ , holds, in the limit ε → 0, (�ε�ε)(z + εζ ) = ∫

R
K(ζ ′ −

ζ )ψ(ζ ′)dζ ′ + o(1) and (P0�ε)(z + εζ ) = � · ψ(�ζ) + o(1) where � := 1
T ′(z) > 0. Hence,

(Pε�ε)(z + εζ ) = �

∫

R

K(ζ� − ζ ′)ψ(ζ ′)dζ ′ + o(1)

=: (Kψ)(ζ ) + o(1).

The above setting applies to �ε = P0(I − �ε)ϕ0, namely

[P0(I − �ε)ϕ0](z + εζ ) = β + α

2
[�θ(ζ ) − Kθ(ζ )] + o(1).

Indeed, Kθ(ζ ) = �θ(ζ ) for |ζ | ≥ �−1, hence �θ − Kθ is compactly supported. Thus

qk = (β + α)〈θp, Kk(�I − K)θ〉
2�

.

Since the operator K has L∞ norm smaller than |�|, the latter equality implies

lim
ε→0

λ0 − λε

ε
= 2� − (β + α)

2

∞∑

n=0

〈2θp, Kn(�I − K)θ〉.

On the other hand, a direct computation (observing the fact that θ(y) = θ(�y)) shows that
2θp = (I − K∗)θ , so

lim
ε→0

λ0 − λε

ε
= 2� − β + α

2

[
〈θ, (�I − K)θ〉 − lim

n→∞〈(K∗)nθ, (�I − K)θ〉
]
.

Note that (K∗)nθ converges pointwise to a function θ∞ such that θ − θ∞ is supported in the
interval [−(1 − �)−1, (1 − �)−1], see (3.15). In particular, K∗θ∞ = θ∞. Then,

lim
ε→0

1 − λε

ε
= 2� − β + α

2
〈θ − θ∞, (�I − K)θ〉

= 2� − β + α

2

[〈(I − K∗)(θ − θ∞), θ〉 + (� − 1)〈θ − θ∞, θ〉]

= 2� − β + α

2

[〈2θp, θ〉 + (� − 1)m(1 − θθ∞)
]

= β + α

2

(
1 − 1

T ′(z)

)
m(1 − θθ∞) + β − α

2
m(2θp). (3.12)

To make the formula more explicit and transparent let us make some further remarks. The
original dynamical system has a natural invariant measure with density by h = limn→∞ P n

0 1.
By our assumptions, {h,χh} is a basis for the eigenspace of the eigenvalue one of the opera-
tor P0. Thus ϕ0 = aχh + bh for suitable a, b ∈ R. Recall that

∫
I1

|ϕ0|dm = ∫
I2

|ϕ0|dm = 1
2 .

Hence 1
2 = |b − a| ∫

I1
hdm = |b − a| limn→∞

∫ 1
0

1−χ

2 ◦ T n dm = |b − a|m(I1) and, analo-

gously, 1
2 = |b + a|m(I2). Therefore,

α = |ϕ0(z
−)| = h(z−)

2m(I1)
and β = |ϕ0(z

+)| = h(z+)

2m(I2)
. (3.13)
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To describe the meaning of the two factors involving θ and θ∞, let Z be a random variable
whose distribution has probability density K . Then

m(2θp) = −2E[Z]. (3.14)

Next let Z1,Z2, . . . be independent copies of Z. The kernel K∗ describes a Markov process

Xn = �−1(Xn−1 + Zn) = · · · = �−n

(

X0 +
n∑

k=1

�k−1Zk

)

.

The asymptotic behavior of the process (Xn) is determined by the random variable W :=∑∞
k=1 �k−1Zk . Indeed, let X0 = ζ . Then Xn → +∞ if W > −ζ and Xn → −∞ if W < −ζ .

(As the Zk have density, W = 0 has probability 0.) As ((K∗)nθ)(ζ ) is the conditional expec-
tation of θ(Xn) given X0 = ζ , it follows readily that

θ∞(ζ ) = P(Xn → +∞|X0 = ζ ) − P(Xn → −∞|X0 = ζ )

= 1 − 2P(W < −ζ ). (3.15)

Hence

m(1 − θθ∞) = 2
∫ ∞

0
[P(W > ζ) + P(−W > ζ)] dζ = 2E[|W |]. (3.16)

Note that (1 − 1/T ′(z))m(1 − θθ∞) = 2(1 − �)E[|W |] ≥ 2(1 − �)|E[W ]| = 2|E[Z]| =
|m(2θp)|, so the r.h.s. of (3.12) is clearly positive.

We finish this section with a comment on the term exchange rate. Let A+
ε := {ϕε > 0},

A−
ε := {ϕε < 0}, and p̃ε := 1A+

ε
·P ∗

ε 1A−
ε

+ 1A−
ε

·P ∗
ε 1A+

ε
. p̃ε(x) is the probability to exchange

the sets A±
ε under the action of P ∗

ε . Now Proposition 5.7 from [8] can be rephrased in
our setting as 1 − λε = 2

∫
p̃ε|ϕε|dm,5 so it is nearly twice the “stationary exchange rate”∫

p̃εhε dm where hε = Pεhε is the unique invariant probability density of the perturbed
system. If all Aε are identical (e.g. under suitable symmetry assumptions on the system as
in [8, Corollary 5.9]), then p̃ε coincides with pε from above.

4 An Application to Two Coupled Interval Maps

Let T : [0,1] → [0,1] be a mixing piecewise expanding map as in Sect. 3. To simplify the
discussion we assume that γ := inf |T ′| > 4. Let M := [0,1]2 and define, for δ ∈ [0, 1

4 − 1
γ
),

the two-dimensional coupled map

T̂ : M → M, T̂ (x, y) = ((1 − δ)T (x) + δT (y), (1 − δ)T (y) + δT (x)).

It is uniformly piecewise expanding with minimal expansion strictly larger than 2 in the
sense that

‖(DT̂ )−1‖ ≤ 1

γ (1 − 2δ)
<

1

4
.

5The operator P in [8] corresponds to our Pε and the signed measure ν to our ϕεm.
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As discussed in great detail in [15] there is δ1 ∈ (0, 1
2 − 1

γ
] such that, for δ ∈ [0, δ1], T̂ is

mixing in the sense that its Perron-Frobenius operator P̂ : BV(M) → BV(M) has a unique
invariant probability density ĥ and a spectral gap. Here BV(M) is the space of functions of
bounded variation on R

2 that vanish outside M .
For ε ∈ E := [0, ε1] let Sε := {(x, y) ∈ M : |x − y| ≤ ε}. If we interpret Sε as a hole

in the phase space M , this means that we stop a trajectory as soon as the two components
have synchronized up to a difference of at most ε. The corresponding Perron-Frobenius
operator P̂ε : BV(M) → BV(M) is defined by P̂ε(ψ) = P̂ (ψ · 1M\Sε ). Denote the (two-
dimensional) variation of a function ψ ∈ BV(M) by Var(ψ). It is easy to check that
Var(P̂εψ) ≤ 2 Var(P̂ψ) so that the family of operators P̂ε satisfies a uniform Lasota-Yorke
inequality. (Observe that we made the generous assumption γ > 4 and consult [15].) In view
of the spectral stability results of [14], assumptions (A1)–(A4) are satisfied with ν0 = m (the
Lebesgue measure on M), ϕ0 = ĥ, μ0 = ĥm and λ0 = 1.

We turn to assumptions (A5) and (A6). Observe first that

ν0(P0 − Pε)(ψ) = m(ψ1Sε ) ≤ Cε Var(ψ). (4.1)

(The constant C depends on the details of the definition of the variation.) So in particular
ηε ≤ Cε and (A5) is satisfied. As ĥ is of bounded variation, we may assume that it is regu-
larized along the diagonal of M in the sense that for 1D-Lebesgue-almost every x the value
ĥ(x, x) is the average of the limits of ĥ(x −u,x +u) and ĥ(x +u,x −u) as u ↘ 0. In view
of (4.1) we therefore conclude

lim
ε→0

(2ε)−1�ε = lim
ε→0

(2ε)−1
∫

Sε

ĥ dm =
∫ 1

0
ĥ(x, x) dx. (4.2)

As Var(ĥ1Sε ) ≤ 2 Var(ĥ), we conclude that (A6) is satisfied if
∫ 1

0 ĥ(x, x) dx > 0. It remains
to evaluate the qk . As in Sect. 3 let

Ûk,ε := T̂ −1(M \ Sε) ∩ · · · ∩ T̂ −k(M \ Sε) ∩ T̂ −(k+1)Sε.

Then qk,ε = μ0(Sε ∩ Ûk,ε)/μ0(Sε) and, since the diagonal of M is invariant under T̂ , we find

q0 = lim
ε→0

q0,ε = 1
∫ 1

0 ĥ(x, x) dx

∫ 1

0
ĥ(x, x)

1

(1 − 2δ)|T ′(x)| dx

and qk = limε→0 qk,ε = 0 for all k ≥ 1. So finally,

lim
ε→0

1 − λε

2ε
=

∫ 1

0
ĥ(x, x)

(
1 − 1

(1 − 2δ)|T ′(x)|
)

dx. (4.3)

5 Related Results

5.1 Metastable States in Molecular Dynamics and Oceanic Structures

Phase space methods to characterize biomolecular conformations as metastable states are
used in molecular dynamics (see e.g. [20] and references cited there). Very roughly, if
the Markov operator Pε describes the discrete time evolution of such a system in a
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fixed time scale and if X = D1 ∪ D2 is a decomposition (up to null sets) of the un-
derlying phase space, then the metastability measure of this decomposition is defined as
meta(D1,D2) = 1

2 [με(D1)
−1

∫
D1

Pε1D1dμε + με(D2)
−1

∫
D2

Pε1D2dμε]. Theorem 1 of [20]
relates meta(D1,D2) to the second eigenvalue of Pε in a way very similar to formula (3.12).
Reference [11] is an up-to-date review of the phase space decomposition approach to
metastability in general flow dynamical systems, and [12] is an application of these ideas
to the detection of coherent oceanic structures. In the framework of weakly coupled rapidly
mixing Markov chains, reference [21] also relates the second largest eigenvalue of a system
to the exchange probabilities between its components.

5.2 Shannon Capacity of Constrained Systems of Binary Sequences

In information theory, the topological entropy of subshifts of {0,1}N that are determined by
a (short) list Lm = (B

(m)

1 , . . . ,B(m)
p ) of distinct blocks of length m which are not allowed to

occur [18] is called the Shannon capacity of the system. It is closely related to the rate of
periodic prefix-synchronized (PPS) codes with markers B

(m)
i , i = 1, . . . , p (see e.g. [16]).

For each sequence L1,L2, . . . of such lists with fixed length p there are a subsequence

(mj ) and z1, . . . , zp ∈ {0,1}N such that the B
(mj )

i converge to zi as j → ∞. We will assume
without loss that the full sequences (B

(m)
i )m converge. As the full two-shift is isomorphic

(for each invariant measure of positive entropy) to the doubling map,6 the shift constrained
by the forbidden blocks in Lm is isomorphic to the doubling map T with “hole” Im being
the union of those monotonicity intervals of T m labeled by the words in Lm. Hence the
topological entropy h(Lm) of this shift equals log(2λm) where λm is the leading eigenvalue
of the Perron-Frobenius operator of T with hole Im, compare Sect. 3.1.

If the limit points zi belong to B
(m)
i for all i and m, one can analyze the situation just

as in Sect. 3.1. Some elementary reasoning yields the following: for i = 1, . . . , p let 
(i) =
min{j ≥ 1 : T jzi ∈ {z1, . . . , zp}} with the convention that 
(i) = +∞ if no such j exists.
Then

lim
m→∞

log 2 − h(Lm)

2−m
=

p∑

i=1

(1 − 2−
(i)).

This is minimal when all 
(i) = 1, e.g. if the zi form just one periodic orbit. In that case
h(Lm) = log 2 − p2−(m−1) + o(2−m), which supports the conjecture on the precise values of
h(Lm) for p = 2k and m ≥ k + 1 stated in [16].

6 Proof of the Main Theorem

As announced in Remark 2.2 we prove Theorem 2.1 under the weaker summability assump-
tion (A3∗). The reader who does not want to follow this slight generalization of the argument
may just neglect all “∗” attached to the norms. We use the following notation:

κN :=
∞∑

n=N

sup
ε∈E

‖Qn
ε‖∗.

6Just associate to each trajectory x ∈ [0,1] the sequence (σn) ∈ {0,1}N where σn = 0 iff T nx ∈ [0,1/2].
This induces a measurable isomorphism (modulo null sets) between the doubling map and the full one-sided
shift.
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Lemma 6.1 There is a constant C > 0 such that, for all ε ∈ E and all N ≥ 0,

(a) |1 − νε(ϕ0)| ≤ Cηε ,
(b) ‖QN

ε ϕ0‖ ≤ CκN(‖(P0 − Pε)(ϕ0)‖∗ + |λ0 − λε|).

Proof (a) As (I − λ−1
ε Pε)(λ

−1
ε Pε)

k(ϕ0) = (I − λ−1
ε Pε)Q

k
ε(ϕ0) for all k ≥ 0,

|1 − νε(ϕ0)| = lim
n→∞

∣
∣ν0

(
ϕ0 − (λ−1

ε Pε)
n(ϕ0)

)∣∣

≤
∞∑

k=0

∣∣ν0
(
(I − λ−1

ε Pε)Q
k
ε(ϕ0)

)∣∣

=
∞∑

k=0

∣∣ν0

(
(λ−1

0 P0 − λ−1
ε Pε)Q

k
ε(ϕ0)

)∣∣

≤ |λ0|−1ηε

∞∑

k=0

‖Qk
ε‖∗‖ϕ0‖∗ + |λ−1

0 ||λε − λ0|‖ν0‖
∞∑

k=1

‖Qk
ε‖∗‖ϕ0‖∗

= O(ηε) + O(λ0 − λε) = O(ηε)

where we used (A3∗) and (2.3) for the last estimate.
(b) For each N ≥ 0 we have

‖QN
ε ϕ0‖ ≤ lim sup

n→∞
‖QN

ε (ϕ0 − (λ−1
ε Pε)

n(ϕ0))‖ + lim sup
n→∞

‖QN+n
ε ϕ0‖

≤
∞∑

k=0

‖QN
ε (λ−1

ε Pε)
k(I − λ−1

ε Pε)(ϕ0)‖ + lim sup
n→∞

κN+n‖ϕ0‖∗

≤ |λ−1
0 |

∞∑

k=0

(‖QN+k
ε (P0 − Pε)(ϕ0)‖ + |λ0 − λε|‖QN+k+1

ε ϕ0‖
)

≤ |λ−1
0 |

∞∑

k=0

‖QN+k
ε ‖∗ (‖(P0 − Pε)(ϕ0)‖∗ + |λ0 − λε|‖ϕ0‖∗)

= O(κN)
(‖(P0 − Pε)(ϕ0)‖∗ + |λ0 − λε|

)
. �

Proof of Theorem 2.1 Observe first that by (2.2), for each n > 0,

νε(ϕ0)(λ0 − λε)

= νε(ϕ0)ν0((P0 − Pε)(ϕε))

= �ε − ν0

(
(P0 − Pε)(I − (λ−1

ε Pε)
n)(ϕ0)

) − ν0

(
(P0 − Pε)Q

n
ε(ϕ0)

)

= �ε −
n−1∑

k=0

ν0
(
(P0 − Pε)(λ

−1
ε Pε)

k(I − λ−1
ε Pε)(ϕ0)

) + O(ηε‖Qn
εϕ0‖)

= �ε − λ−1
0

n−1∑

k=0

ν0

(
(P0 − Pε)(λ

−1
ε Pε)

k(P0 − Pε)(ϕ0)
)
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+ λ−1
0 (λ0 − λε)

n∑

k=1

ν0

(
(P0 − Pε)(λ

−1
ε Pε)

k(ϕ0)
)

+ O(κn)
(|�ε| + ηε|λ0 − λε|

)
(by Lemma 6.1b and (A6∗))

= �ε

(

1 − λ−1
0

n−1∑

k=0

λ−k
ε qk,ε

)

+ O(ηε)|λ0 − λε|
n∑

k=1

(|νε(ϕ0)|‖ϕε‖ + ‖Qk
εϕ0‖

) + O(κn)
(|�ε| + ηε|λ0 − λε|

)

where

qk,ε := ν0((P0 − Pε)P
k
ε (P0 − Pε)(ϕ0))

ν0((P0 − Pε)(ϕ0))
. (6.1)

Observing Lemma 6.1a, (A4) and Lemma 6.1b, the error terms can be estimated by
O(ηε)n|λ0 − λε| + O(κn)|�ε| so that, in view of Lemma 6.1a, this yields, for each n > 0,

(1 + O(ηε))(λ0 − λε)(1 + nO(ηε)) = �ε

(

1 − λ−1
0

n−1∑

k=0

λ−k
ε qk,ε

)

+ O(κn)|�ε|. (6.2)

If �ε = 0 and ηε is small, it follows that λε = λ0. Otherwise we assumed in (A7) that
qk = limε→0 qk,ε exists for each k, and we conclude

lim
ε→0

λ0 − λε

�ε

= 1 −
n−1∑

k=0

λ
−(k+1)

0 qk + O(κn)

for each n > 0. From this the claim (2.4) follows in the limit n → ∞. �
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